Voter Turnout and Electoral College Attitudes

Gregory D. Webster

University of Illinois at Urbana-Champaign

Keywords: Voter turnout; Electoral College; Attitudes; Multilevel modeling; Interrupted time series

I propose that the following three items be included in the 2007-2009 ANES Panel Study.

1. Thinking for a moment about the way in which the president [will be/was] elected in this country, which would you currently prefer—to amend the Constitution so the candidate who receives the most total votes nationwide wins the election, or to keep the current system, in which the candidate who wins the most votes in the Electoral College wins the election? On a scale from 1 (keep the current system) to 7 (amend the Constitution), how would you respond?

2. Some people say that the Electoral College system encourages voter turnout in so-called “swing” states, where there are nearly equally numbers of Republicans and Democrats. Some people say that the Electoral College system discourages voter turnout in states where either Republicans or Democrats already hold a large majority. Given the [current/recent] presidential [campaign/election], what do you currently think? To what extent [does/did] the Electoral College system encourage you to vote? On a scale from 1 (it [does/did] not encourage me to vote) to 7 (it strongly [encourages/encouraged] me to vote), how would you currently respond?

3. To what extent [does/did] the Electoral College system discourage you from voting? On a scale from 1 (it [does/did] not discourage me from voting) to 7 (it strongly [discourages/discouraged] me from voting), how would you currently respond?
Rationale

Why are these three items key to understanding voter turnout?

The items are important to understanding people’s intentions to vote because the winner-take-all system of the Electoral College focuses candidates’ and voters’ attentions on a few “swing” or “key battleground” states (i.e., states with roughly equal numbers of partisan voters), and it is these states that typically experience higher voter turnout. Thus, accurately assessing people’s attitudes about the Electoral College and the extent to which they influence people’s likelihood to vote in different states may be crucial to improving voter turnout.

Presidential election data support the relationship between a presidential candidate’s margin of victory and voter turnout at the state level. Specifically, in 2000, the linear effect of margin of victory on voter turnout was not significant \((b = -0.14, t_{47} = -1.35, ns)\), but the quadratic effect was \((b = 0.016, t_{47} = 2.33, p < .05)\). This resulted in a U-shaped function (Figure 1a). Simple effects tests at ±1SD from the mean margin of victory revealed that, for states with close elections, margin of victory was negatively related to voter turnout \((b = -0.49, t_{47} = -2.20, p < .05)\), whereas for states with lopsided elections, margin of victory was not significantly related to voter turnout \((b = 0.22, t_{47} = 1.70, ns)\). Similarly, in the 2004 presidential election, both the linear \((b = -0.23, t_{47} = -2.20, p < .05)\) and quadratic \((b = 0.016, t_{47} = 2.45, p < .05)\) effects of margin of victory on voter turnout were significant (Figure 1b). Simple effects tests at ±1SD from the mean margin of victory revealed that, for states with close elections, margin of victory was negatively related to voter turnout \((b = -0.58, t_{47} = -2.65, p < .05)\), whereas for states with lopsided elections, margin of victory was not significantly related to voter turnout \((b = 0.12, t_{47} = 1.02, ns)\). Thus, in the last two presidential elections, states with closer elections had higher voter turnout. To test for a possible causal relationship, the 2004 voter turnout data were regressed onto the 2000 margin-of-victory effects. Both the linear \((b = -0.25, t_{47} = -2.59, p < .05)\)
and quadratic ($b = -0.020$, $t_{47} = -3.02, p < .01$) effects of 2000 margin of victory on 2004 voter turnout were significant (Figure 1c). Once again, simple effects tests at ±1SD from the mean margin of victory revealed that, for states with close elections, margin of victory was negatively related to voter turnout ($b = -0.71$, $t_{47} = -3.22, p < .01$), whereas for states with lopsided elections, margin of victory was not significantly related to voter turnout ($b = 0.20$, $t_{47} = 1.56, ns$). An alternative causal model found that neither the linear nor quadratic effects of 2004 margin of victory were significantly related to 2000 voter turnout. Thus, it appears that states in which close elections occur predict higher voter participation four years later, but not vice versa. Because the winner-take-all system of the Electoral College focuses attention on a handful swing states, people’s attitudes towards the Electoral College may differ across states and time, especially if a state’s swing status waxes and wanes during an election year.

Why do these three items merit inclusion in the ANES Panel Study?

There are at least four reasons why the proposed items warrant inclusion in the ANES Panel Study. First, the ANES has asked questions about people’s attitudes regarding the Electoral College in the past. To my knowledge, however, this has only occurred once, during the 1968 presidential election, and the question focused on people’s beliefs about how George Wallace’s third-party candidacy might impact the Electoral College outcome (see V680136). Thus, relatively little is known about people’s attitudes about the Electoral College, how they change both during and after the election campaign, and the extent to which they influence intentions to vote.

Second, Item 1 has been used previously in a nationwide CNN/USA Today/Gallup Poll immediately following the 2000 presidential election (November 11-12, 2000). It has been adapted here for repeated assessment during and after the presidential campaign by (a) including the phrases “will be/was” and “currently” and (b) expanding the response scale from a
forced-choice dichotomous outcome to a semantic differential scale format.

Third, Items 2 and 3 will allow researchers to gauge the extent to which people feel encouraged to vote or discouraged from voting (or both or neither) by the Electoral College system. Items 2 and 3 represent separate semantic differential scales, which will allow participants to provide specific information about their Electoral College attitudes. It is possible that these two items will be strongly negatively correlated, and, after one is reverse scored, they can be averaged into a reliable index of Electoral College-based voting intentions. It is also possible, however, that respondents may experience attitudinal ambivalence (cf. Cacioppo, Gardner, & Berntson, 1997; Priester & Petty, 1996; Thompson, Zanna, & Griffin, 1995) regarding these two items, where they feel both encouraged and discourage by the Electoral College system. Thus, Items 2 and 3 will provide researchers with a flexible format to ask a broad variety of empirically testable questions.

Fourth, these items will allow researchers to test multilevel models in which changes in Electoral College attitudes over time are nested within people, and people are nested within different states. This is particularly important if people’s attitudes regarding the Electoral College and their intentions to vote (a) change during and after an election and (b) are particularly correlated in swings states, states dominated by a single party, or both.

Proposed Analyses

Psychometric Properties

It is expected that, for most respondents, attitudes about the Electoral College system (Item 1) will be intercorrelated with attitudes about the extent to which the Electoral College encourages people to vote (Item 2) or discourages them from voting (Item 3). Thus, it is expected that these three items will have enough internal consistency to be aggregated into a single measure of Electoral College attitude. It is also expected, however, that some people will
experience attitudinal ambivalence regarding Items 2 and 3, which can be defined as

\[\text{Ambivalence} = \frac{(\text{Encouraged} + \text{Discouraged})}{2} - |\text{Encouraged} - \text{Discouraged}|, \]

where “Encouraged” and “Discouraged” refer to Items 2 and 3, respectively. Note that
“(Encouraged + Discouraged)” addresses attitude intensity (or strength or magnitude), whereas
“|Encouraged – Discouraged|” addresses attitude similarity. Thus, although it is anticipated that
there will be some agreement across these items for most people, it is also expected that some
people will experience attitudinal ambivalence, which may itself fluctuate over time.

Multilevel Modeling

The ANES Panel Study data will be inherently nested in structure, with repeated
measurements (i.e., time) nested within respondents, who are in turn nested within geopolitical
groups or spaces (e.g., census tracts, states, etc.). Multilevel modeling of the ANES Panel Study
data will provides researcher with a flexible and versatile analytic toolbox. For example, given
the items proposed here, I can examine (a) the extent to which Electoral College attitudes
(ECAs) change over time (e.g., pre- vs. post-election), (b) the extent to which these temporal
changes are moderated by individual differences (e.g., political attitudes, social dominance
orientation, etc.), and (c) the extent to which these temporal and individual differences are
moderated by geopolitical differences between states (e.g., actual voter turnout, margin of
victory, etc.). More specifically, I could test the three-level model described below (see
Raudenbush & Bryk, 2002, pp. 228-251, for a detailed discussion of three-level hierarchical
linear models). At the within-person level, ECAs could be modeled as a function of time,

\[\text{ECAs}_{ijk} = \pi_{0jk} + \pi_{1jk}(\text{Time})_{ijk} + e_{ijk}, \]

or some other within-person variable included in the ANES Panel Study. The error term, \(e_{ijk} \),
represents the within-person residual variance. In multilevel models, the regression coefficients
generated at one level of analysis can be modeled simultaneously at another level of analysis.

For example, a between-person model, such as
\[
\pi_{0jk} = \beta_{00k} + \beta_{01k}(\text{SDO})_{jk} + r_{0jk},
\]
\[
\pi_{1jk} = \beta_{10k} + \beta_{11k}(\text{SDO})_{jk} + r_{1jk},
\]
could evaluate the extent to which individual difference variables, such as social dominance orientation (SDO), moderate people’s overall ECAs \((\beta_{01k}(\text{SDO})_{jk})\) and the extent to which they change over time \((\beta_{11k}(\text{SDO})_{jk})\). (Note that Morrison and Ybarra have suggested including two SDO items for the ANES Panel Study in their proposal, “Threat, Social Dominance, and Voting Behavior.”) If adopted, these SDO items could be used to examine either within-person covariance with ECAs or averaged across waves to assess individual differences in SDO.) The error terms, \(r_{0jk}\) and \(r_{1jk}\), represent the between-person residual variances of the within-person intercepts and slopes, respectively. These between-person coefficients can in turn be modeled as a function of geopolitical group differences, such as differences between the 50 states. For example, in the between-state model
\[
\beta_{00k} = \gamma_{000} + \gamma_{001}(\text{Margin})_k + u_{00k},
\]
\[
\beta_{01k} = \gamma_{010} + \gamma_{011}(\text{Margin})_k + u_{01k},
\]
\[
\beta_{10k} = \gamma_{100} + \gamma_{101}(\text{Margin})_k + u_{10k},
\]
\[
\beta_{11k} = \gamma_{110} + \gamma_{111}(\text{Margin})_k + u_{11k},
\]
the variable “Margin” describes the extent to which between-state differences in candidates’ margins of victory moderate (a) overall ECAs \((\gamma_{001}(\text{Margin})_k)\), (b) the extent to which they change over time \((\gamma_{011}(\text{Margin})_k)\), (c) the extent to which overall ECAs are moderated by SDO \((\gamma_{101}(\text{Margin})_k)\), and (d) the extent to which changes over time are moderated by SDO \((\gamma_{111}(\text{Margin})_k)\). For example, of particular interest here might be the coefficient for \(\gamma_{111}(\text{Margin})_k\),
which describes direction and strength of the three-way cross-level interaction between ECAs, time, and margin of victory. Other multilevel models using this flexible format are also possible (e.g., incorporating a growth curve model, using between-state voter turnout differences, etc.).

The error terms, u_{00k} through u_{11k}, represent the between-state residual variances for their respective between-person intercepts and slopes.

Within-Person Analyses

Synchronous relationships. Synchronous analyses will allow for testing within-person relationships among ECAs and other variables in the ANES Panel Study, such as SDO or political affiliation. For example, it is expected that the within-person relationship between SDO and attitudes favoring the Electoral College system will be positive for the average person.

Lagged relationships. Because of its repeated waves of data collection, the ANES Panel Study will allow researchers to test lagged relationships between variables. This will allow for some limited causal inference, since it will be possible to establish temporal precedence (West & Hepworth, 1991). Such lagged analyses can be easily conducted using the multilevel modeling framework described above.

Interrupted time-series analysis. In a typical interrupted time-series design (ITSD), a single event or intervention takes place at a single point in time over the course of several repeated observations or measurements (Shadish, Cook, & Campbell, 2002). Because the ANES Panel Study will have four waves of pre-election data and two-waves of post-election data, it provides researchers with a unique opportunity to compare pre- and post-election attitudes via an ITSD. Specifically, it is expected that there will be a shift in ECAs following the election, especially if the popular vote differs markedly from the Electoral College vote. If this is the case, people who endorsed a candidate that won the Electoral College vote should express renewed faith in the system, while people who endorsed the losing candidate should show an increasing
disapproval of the Electoral College system. An ITSD could empirically test this possibility.

Between-Person and Between-State Analyses

As mentioned earlier, the proposed multilevel modeling framework is ideal for testing not only relationships between attitudes and how they change over time, but also how these attitudes and their temporal changes are moderated by various between-person and between-state differences. For example, do between-person differences in ethnic identity, political orientation, socioeconomic status (SES), or past voting history moderate changes in ECAs over time? Do between-state differences in voter turnout or margin of victory also moderate these effects? The question of ethnic identity might be particularly interesting, since the percentage of non-Hispanic/Latino Whites living in a state is significantly associated with a state’s per-capita voting power in the Electoral College (Webster, 2007).

Coda

Promoting voter turnout is a crucial component of participative democracy. Although there has been much recent discussion over the benefits and limitations of the winner-take-all Electoral College system, the extent to which it promotes or deters voting remains largely unexamined. Moreover, it remains unknown as to whether people’s attitudes regarding the Electoral College—and its influence on their decision to vote—may change over the course of the presidential campaign and after the election. In addition, such temporal attitude shifts may depend on between-state and individual differences. Thus, I have proposed adding the three items described above to the ANES Panel Study to help elucidate the possible causal relationship between attitudes toward the Electoral College and voting intentions.
References

Figure Caption

Figure 1. Presidential election voter turnout (percentage of voting age population that voted) as a function of linear and quadratic margin of victory (percentage) for 2000 (panel a), 2004 (panel b), and 2000 margin of victory predicting 2004 voter turnout (panel c), for all 50 United States.